宁波国际照明展
广州国际照明展览会(光亚展)

OLED技术的昨天、今天和明天

OLED技术的昨天、今天和明天

2008年1月8日

前言:OLED显示技术是OEL显示技术的一种,在过去的十多年里发展迅猛,取得了巨大的成就。全球越来越多的显示器厂家纷纷投入研发,大大的推动了OLED的产业化进程。目前OLED已到大规模量产的前夜。可以相信,在不久的将来OEL显示器件必将有一个突破性的发展。

一、OLED的产生与发展

OLED的研究产生起源于一个偶然的发现。1979年的一天晚上,在Kodak公司从事科研工作的华裔科学家邓青云博士(Dr.C.W.Tang)在回家的路上忽然想起有东西忘记在实验室里,回去以后,他发现黑暗中有个亮的东西。打开灯发现原来是一块做实验的有机蓄电池在发光。这是怎么回事?OLED研究就此开始,邓博士由此也被称为OLED之父。

1987年,Kodak公司最早发表其研究成果,此后,全世界许多企业和研究机构开始致力于小分子OLED器件和相关课题的研究,有关的专著文献和专利的数量每年成百上千地递增。在美国(除Kodak公司外)和欧洲,绝大多数有机EL的研究工作是从9O年代早期开始的。今天,高效率(gt;15lm/w)和高稳定性(发光强度为150nits时,工作寿命gt;10000小时)的有机EL器件已经研制出来。

对高分子有机EL的研究工作比对小分子有机EL的研究,起步要晚得多。直到1990年,才由Burroughes及其合作者研究成功第一个高分子有机EL器件。此后,为了发展聚合物EL技术,在美国和欧洲进行了大量的研究工作。人们一般都队为,聚合物材料比有机小分子材料要稳定,这也就成了发展聚合物EL的原动力。

目前,OLED的产品已从试验室走向了市场。从1997~l999年,OLED显示器的惟一市场是在车载显示器上,2000年以后,产品的应用范围逐渐扩大到手机显示屏。OLED在手机上的应用又极大地推动其技术的进一步发展和应用范围的迅速扩大,对现有的LCD、LED和VFD提出强有力的挑战。

二、OLED显示特点与分类

有机电致发光(OrganicElectroluminescentLight)简称为OEL。它有两个技术分支,一个是分子量在500~2000之间的小分子有机发光二极管(OrganicLightEmittingDiode)简称为OLED或SM-OLED;另一个是分子量在10000~100000之间的高分子(又称聚合物)有机发光二极管(PolymerLight-EmittingDiode)简称为PLED或P-OLED。

OEL显示器件具有的主动发光、发光效率较高、功耗低、轻、薄、无视角限制等优点,被业内人士认为是最有可能在未来的显示器件市场上占据霸主地位的新一代显示器件。作为一项崭新的显示技术,OLED免不了还存在很多不足,其材料、器件寿命、良品率等还有待于进一步研究、提高,应用领域也有待于进一步扩大,这就为今后的科研探索提供了很大的研究空间。

OLED技术在过去的十多年里发展迅猛,取得了巨大的成就。由于全球越来越多的显示器厂家纷纷投入研发,大大的推动了OLED的产业化进程,使得OLED产业的成长速度惊人,目前已经到达了大规模量产的前夜。业内有关人士预言,2007年也许会成为OLED大规模量产的元年。从2000年到2005年OLED面板出货量年均增长速度超过了175%,未来随着OLED产品逐渐向有源全彩和大尺寸的方向发展,OLED产业还将保持高速的增长势头。OLED产品已经逐渐被下游厂商所认可,需求量也明显增大。目前OLED主要应用领域包括通讯产品(手机副屏)、消费类电子产品(MP3)、车载和仪器仪表等领域。

与OLED技术相比,PLED技术发展稍有滞后,主要是因为介入的厂商有限、技术相对不太成熟、原材料合成难度大、设备生产厂商少等原因。尽管如此,其发展速度也十分迅速,目前市场上已经可以见到配有较低档次PLED的产品。据DisplaySearch预测,到2008年PLED市场份额将快速上升到OEL市场的40%。

三、OLED的结构和发光机理简述

OLED显示器件是基于有机材料的一种电流型半导体发光器件。其典型结构是在ITO玻璃上制作一层几十纳米厚的有机发光材料作发光层,发光层上方有一层低功函数的金属电极。当电极上加有电压时,发光层就产生光辐射。

OLED的发光机理和过程是从阴、阳两极分别注入电子和空穴,被注入的电子和空穴在有机层内传输,并在发光层内复合,从而激发发光层分子产生单态激子,单态激子辐射衰减而发光。



OLED要获得全彩有三种方法:

1、采用白色发光层加滤色片。这是获得全色显示最简单的方法。

2、采用红、绿、蓝三种有机发光材料,因此发光层为三层结构。

3、采用蓝色有机发光材料,再用颜色转换材料获得全彩。

四、OLED的制备工艺

1、OLED的制备工艺

目前在中国大陆,OLED显示器件的制备还处于实验室阶段,但已到达了中试的边缘,因此我们将主要讨论实验室的OLED制备工艺。

不管是实验室、中试,还是量产,OLED器件的制备过程基本一致,主要区别在于器件的真空蒸镀设备上。实验室一般选用手动的真空蒸镀设备进行单片样品蒸镀,以便于制作种类不同的实验样品;中试线一般采用半自动的真空蒸镀设备进行连续的多片样品蒸镀,以便于小批量产品的切换;量产线一般采用全自动的真空蒸镀设备进行流水样品蒸镀(或采用线蒸镀技术与工艺),以便于提高良品率、降低产品成本。据悉,也有的机构正在研究尝试在量产线上用旋涂技术工艺进行生产OLED产品。

OLED显示器件的制备工艺包括:ITO玻璃清洗→光刻→再清洗→前处理→真空蒸镀有机层→真空蒸镀背电极→真空蒸镀保护层→封装→切割→测试→模块组装→产品检验及老化实验等十几道工序,其几个关键工序的工艺如下。

(1)ITO玻璃的洗净及表面处理

ITO作为阳极其表面状态直接影响空穴的注入和与有机薄膜层间的界面电子状态及有机材料的成膜性。如果ITO表面不清洁,其表面自由能变小,从而导致蒸镀在上面的空穴传输材料发生凝聚、成膜不均匀。

ITO表面的处理过程为:洗洁精清洗→乙醇清洗→丙酮清洗→纯水清洗,均用超声波清洗机进行清洗,每次洗涤采用清洗5分钟,停止5分钟,分别重复3次的方法。然后再用红外烘箱烘干待用。对洗净后的ITO玻璃还需进行表面活化处理,以增加ITO表面层的含氧量,提高ITO表面的功函数。也可以用比例为水:双氧水:氨水=5:1:1混合的过氧化氢溶液处理ITO表面,使ITO表面过剩的锡含量减少而氧的比例增加,以提高ITO表面的功函数来增加空穴注入的几率,可使OLED器件亮度提高一个数量级。

ITO玻璃在使用前还应经过“紫外线-臭氧”或“等离子”表面处理,主要目的是去除ITO表面残留的有机物、促使ITO表面氧化、增加ITO表面的功函数、提高ITO表面的平整度。未经处理的ITO表面功函数约为4.6 eV,经过紫外线-臭氧或等离子表面处理后的ITO表面的功函数为5.0 eV以上,发光效率及工作寿命都会得到提高。对ITO玻璃表面进行处理一定要在干燥的真空环境中进行,处理过的ITO玻璃不能在空气中放置太久,否则ITO表面就会失去活性。

(2)ITO的光刻处理工艺

(3)有机薄膜的真空蒸镀工艺

OLED器件需要在高真空腔室中蒸镀多层有机薄膜,薄膜的质量关系到器件质量和寿命。在高真空腔室中设有多个放置有机材料的蒸发舟,加热蒸发舟蒸镀有机材料,并利用石英晶体振荡器来控制膜厚。ITO玻璃基板放置在可加热的旋转样品托架上,其下面放置的金属掩膜板控制蒸镀图案。

在我们的真空蒸镀设备上进行蒸镀实验,实验结果表明,有机材料的蒸发温度一般在170℃~400℃之间、ITO样品基底温度在100℃~150℃、蒸发速度在1晶振点~10晶振点/秒(即约0.1nm~1nm/S)、蒸发腔的真空度在5×10-4Pa~3×10-4Pa时蒸镀的效果较佳。
但是,有机材料的蒸镀目前还存在材料有效使用率低(〈10%)、掺杂物的浓度难以精确控制、蒸镀速率不稳定、真空腔容易污染等等不足之处,从而导致样片基板的镀膜均匀度达不到器件要求。

(4)金属电极的真空蒸镀工艺

金属电极仍要在真空腔中进行蒸镀。金属电极通常使用低功函数的活泼金属,因此在有机材料薄膜蒸镀完成后进行蒸镀。常用的金属电极有Mg/Ag、Mg:Ag/Ag、Li/Al、LiF /Al等。用于金属电极蒸镀的舟通常采用钼、钽和钨等材料制作,以便用于不同的金属电极蒸镀(主要是防止舟金属与蒸镀金属起化学反应)。

金属电极材料的蒸发一般用加热电流来表示,在我们的真空蒸镀设备上进行蒸镀实验,实验结果表明,金属电极材料的蒸发加热电流一般在70A~100A之间(个别金属要超过100A)、ITO样品基底温度在80℃左右、蒸发速度在5晶振点~50晶振点/秒(即约0.5nm~5nm/S)、蒸发腔的真空度在7×10-4Pa~5×10-4Pa时蒸镀的效果较佳。

(5)器件封装工艺

OLED器件的有机薄膜及金属薄膜遇水和空气后会立即氧化,使器件性能迅速下降,因此在封装前决不能与空气和水接触。因此,OLED的封装工艺一定要在无水无氧的、通有惰性气体(如氩气)的手套箱中进行。封装材料包括粘合剂和覆盖材料。粘合剂使用紫外固化环氧固化剂,覆盖材料则采用玻璃封盖,在封盖内加装干燥剂来吸附残留的水分。

五、制备OLED的材料及其作用

制备OLED的材料种类很多,主要分为阳极材料、阴极材料、缓冲层材料、载流子传输材料和发光材料等几大类。

1、阳极材料

OLED的阳极材料主要作器件的阳极之用,要求其功函数尽可能的高,以便提高空穴的注入效率。OLED器件要求电极必须有一侧是透明的,因此通常选用功函数高的透明材料ITO导电玻璃作阳极。ITO(氧化铟锡)玻璃在400nm~1000nm的波长范围内透过率达80%以上,而且在近紫外区也有很高的透过率。

2、阴极材料

OLED的阴极材料主要作器件的阴极之用,为提高电子的注入效率,应该选用功函数尽可能低的金属材料,因为电子的注入比空穴的注入难度要大些。金属功函数的大小严重的影响着OLED器件的发光效率和使用寿命,金属功函数越低,电子注入就越容易,发光效率就越高;此外,功函数越低,有机/金属界面势垒越低,工作中产生的焦耳热就会越少,器件寿命就会有较大的提高。

OLED的阴极通常采用以下几种型式:

(1)单层金属阴极。如Al、Mg、Ca等,但它们在空气中很容易被氧化,致使器件不稳定、使用寿命缩短,因此选择合金做阴极或增加缓冲层来避免这一问题。
(2)合金阴极。为了既能提高器件的发光效率,又能得到稳定的器件,通常采用金属合金作为阴极。在蒸发单一金属阴极薄膜时,会形成大量的缺陷,造成耐氧化性变差;而蒸镀合金阴极时,少量的金属会优先扩散到缺陷中,使整个有机层变得很稳定。
(3)层状阴极。这种阴极是在发光层与金属电极之间加入一层阻挡层,如LiF、CsF、RbF等,它们与Al形成双电极。阻挡层可大幅度的提高器件的性能。

3、缓冲层材料

在OLED中空穴的传输速率约为电子传输速率的两倍,为了防止空穴传输到有机/金属阴极界面引起光的猝灭,在制备器件时需引入缓冲层CuPc。CuPc作为缓冲层,不仅可以降低ITO/有机层之间的界面势垒,而且还可以增加ITO/有机界面的粘合程度,增大空穴注入接触,抑制空穴向HTL层的注入,使电子和空穴的注入得以平衡。

4、载流子传输材料

OLED器件要求从阳极注入的空穴与从阴极注入的电子能相对平衡的注入到发光层中,也就是要求空穴和电子的注入速率应该基本相同,因此有必要选择合适的空穴与电子传输材料。在器件的工作过程中,由于发热可能会引起传输材料结晶,导致OLED器件性能衰减,所以我们应选择玻璃化温度(Tg)较高的材料作为传输材料。试验中通常选用NPB作为空穴传输层,而选用Alq3作为电子传输材料。

5、发光材料

发光材料是OLED器件中最重要的材料。一般发光材料应该具备发光效率高、最好具有电子或空穴传输性能或者两者兼有、真空蒸镀后可以制成稳定而均匀的薄膜、它们的HOMO和LUMO能量应该与相应的电极相匹配等特性。

在小分子发光材料中,Alq3是直接单独使用作为发光层的材料。还有的是本身不能单独作为发光层,掺杂在另一种基质材料中才能发光,如红光掺杂剂DCJTB,绿光掺杂剂DMQA,蓝光掺杂剂BH1,BD1等。Alq3是一种既可以作为发光层材料,又可以兼做电子传输层材料的一种有机材料。

六、OLED的技术发展现状分析

OLED的新技术层出不穷,发展也很快,这些新技术的出现,大大的推动了OEL迈向产业化的进程。

1、运用激光转印技术的高分辨率OLED成像术

激光感应热成像(简称为LITI)方法是利用一套供体胶片、一组高精度的激光曝光系统和一副衬底来完成的。激光成像系统由激光器、光波调节器、校准与光束扩张光学组件、衰减器、电流计和f-θ扫描透镜组成。

LITI过程描述如下:首先,将热转印的供体压在基质上,供体与受体表面必须紧密接触。然后,用激光束对供体的成像模板进行曝光,结果成像图案从供体接触面向传输层(光发射材料)释放,并附着在传输层的受体接触面上。最后,将使用过的供体剥离,这样在曝光区内的高分辨率条纹就被转印了。为了形成全彩色的显示,顺序使用红、绿、兰3种供体胶片。

LITI转印是一种具有独特优势的激光寻址高分辨率图形处理方法,例如,转印胶片的厚度极其均匀,多层叠的转印能力及具有可扩展性的大尺寸母板玻璃等等。

由于这是一种干法工艺,所以LITI转印不受转印层可溶性物质的影响。因此,我们能够提出衬层的可溶性空穴传输层的解决办法,并提高OLED的性能。LITI成像方法提供了具有极好的厚度均匀性的平直、光滑和均匀的成像条纹。光发射材料能够通过旋涂、丝网涂敷、或真空喷镀等方法涂敷到供体胶片之上。LITI成像精度高于±2.5μm,这种特殊的精度是LITI转印技术的一个与众不同的优点。采用LITI技术,能够获得超过200ppi的极高分辨率图像。与传统的精密掩膜板方法(极限分辨率为150ppi)相比,这是一个显著的性能特点。

2、使用有机膜掺杂及黑色阴极可以提高OLED的性能

加拿大施乐公司的ZoranPopovic博士研究认为,OLED不稳定性的原因主要是来自有机膜层的黑斑老化。正是由于黑斑的老化,使得场致发光器件的量子效率降低,从而导致电致发光亮度逐渐减小,器件寿命缩短,限制了器件的应用的领域。

为了解决这一问题,ZoranPopovic博士采用有机膜掺杂与使用黑色阴极相结合的方法,有效地提高了OLED的性能。实验结果表明,以TPD:rubrene为掺杂剂掺入空穴传输层中可延长器件寿命;增加以CuPc为缓冲材料的缓冲层可延长器件寿命;增加使用NPB:AlQ3混合材料的HTM/ETM混合层可延长器件寿命。

施乐公司使用黑色阴极,使得OLED结构的自然光反射率降低,器件性能得以提高。基于有机金属混合层的阴极,能够提高对比度,降低黑斑的生长。

3、OLED的新产品研发状况

⑴长寿命OLED显示器件

OsramOptoSemiconductorsGmbh公司2006年1月发布了一款长寿命2.7英寸128×64像素的OLED图形显示屏,可视角为180度,对比度为2000:1。通常OLED使用寿命在5000小时左右,而这款产品达到了55000小时。与同规格液晶显示屏相比,具有价格优势,目前它的售价为19.5美元每片。该产品的睡眠功耗为0.05毫瓦,操作温度为-30℃~70%℃。

⑵聚合物OLED

英国CDT公司2006年1月宣布其在聚合物OLED研究上的突破,他们成功的开发出了14英寸聚合物OLED全彩色显示器,由非晶硅主动矩阵底板驱动。该显示器采用了喷墨打印技术,其分辨率达到了1280×768。

⑶大尺寸OLED电视

2005年5月,三星宣布了使用单片OLED面板材料开发出了40英寸WXGA电视机,并于同月在国际SID年会上展出。该电视机的OLED面板由非晶硅(a-Si)主动矩阵(AM)底板驱动,具有1280×800像素的宽屏格式和5000:1的对比度以及600nits的亮度,使OEL面板产品向电视应用方面迈出了至关重要的一步。

七、OEL发展面临的课题及发展前景展望

1、发展面临的课题

显示屏幕的大型化和TV化是的发展方向,OLED要实现大型化,最大的课题便是基板(Backplane)的来源。目前有许多厂商开始将TFT-LCD的基板作为OLED的基板使用,并已实际出货,但良品率较低,只有40%左右。理论上讲,低温多晶硅(LTPS)会比a硅(a-Si)更适合作为OLED的基板,尤其为以下三种技术:DepositedPolySi、NonLaserLTPS、NewLaserLTPS。

但要结合OLED与LTPS-TFT,势必必须考虑目前OLED的蒸镀机台的状况,目前有第1代到第3.5代的机台,第4代以上仍然是一个限制,并无相关机台的供应。因此OLED透过LTPS基板的大型化仍会是一个较大的课题。

目前PLED的制作基本上均采用旋涂法和喷墨打印法,但旋涂法对分辨率有一定的极限限制,而喷墨打印的设备又昂贵,供应商数量有限,有机材料生产厂家也不多,在一定程度上阻碍了PLED的发展进程。因此加强有机材料的合成与生产,推广应用喷墨打印技术是发展PLED的一大课题。

2、发展前景

OLED是一种极具发展前景的平板显示技术,它具有十分优异的显示性能,特别是自发光、结构简单、超轻薄、响应速度快、宽视角、低功耗及可实现柔性显示等特性,被誉为“梦幻显示器”,再加上其生产设备投资远小于TFT-LCD,得到了各大显示器厂家的青睐,已成为显示技术领域中第三代显示器件的主力军。

结论:目前OLED已处于大规模量产的前夜,可以相信,随着研究的进一步深入,新技术的不断涌现,OLED显示器件必将有一个突破性的发展。

来源:中电网

本文来自网络。 授权转载请注明出处:http://www.ledjia.com/article/pid-549.html

快速评论 发表新评论

您还未登录!登录后可以发表回复

文章评论 0人参与

联系我们

联系我们

137-9836-0047

在线咨询: QQ交谈

邮箱: admin@ledjia.com

工作时间:周一至周五,9:00-17:00,节假日休息

关注微信
微信扫一扫关注我们

微信扫一扫关注我们

关注微博
返回顶部